Full-edged Real-Time Indexing for Constant Size Alphabets

Gregory Kucherov
CNRS/LIGM Marne-la-Vallée, France

Yakov Nekrich
University of Kansas, USA

June 23, 2013
History of the Problem and Related Work
find all occurrences of a pattern P in a text T

- string matching: P is fixed (or given first)
- indexing: T is fixed (or given first)
Real-time string matching: early results

- For a fixed P, string matching can be done in real time independently on the alphabet size [Knuth-Morris-Pratt 77] (see also [Matiyasevich 71 (in russian)])

- Language $\{P \# T : P \text{ occurs in } T\}$ can be recognized in real time by a Turing machine [Galil, JACM 81]
Real-time string matching: early results

- for a fixed P, string matching can be done in real time independently on the alphabet size [Knuth-Morris-Pratt 77] (see also [Matiyasevich 71 (in russian)])
- language $\{P\#T : P \text{ occurs in } T\}$ can be recognized in real time by a Turing machine [Galil, JACM 81]
- language $\{T\#P : P \text{ occurs in } T\}$ cannot be recognized in real time by (multi-tape) TM [Freidzon 68 (in russian)]
- ... but this can be done by a TM with two-dimensional tape if T and P are submitted on two independent input tapes [Matiyasevich 71]
Indexing under RAM model

- \{ T\#P : P occurs in T \} can be recognized in real time on RAM [Slisenko 76-78]
- same result in [Kosaraju STOC 94]
- there is an index of T that can be updated in real time such that for any pattern query P made at any moment, one can check of P occurs in current T in time \(O(|P|) \) [Amir, Nor SODA 08]. The result assumes a constant-size alphabet.
Indexing under RAM model

- \(\{ T \neq P : P \text{ occurs in } T \} \) can be recognized in real time on RAM [Slisenko 76-78]
- same result in [Kosaraju STOC 94]
- there is an index of \(T \) that can be updated in real time such that for any pattern query \(P \) made at any moment, one can check if \(P \) occurs in current \(T \) in time \(O(|P|) \) [Amir,Nor SODA 08]. The result assumes a constant-size alphabet.

Our result: an index that can be updated in real time and all occurrences of \(P \) in the current text are reported in time \(O(|P| + nb_occ) \). The result assumes a constant-size alphabet.
Suffix Tree

Context and history

Supporting real-time
Suffix Tree

Three classical linear-time algorithms for constructing a suffix tree

- [Weiner 73]: right-to-left construction
- [McCreight 76]: left-to-right
- [Ukkonen 95]: left-to-right online
Suffix Tree

Three classical linear-time algorithms for constructing a suffix tree

- [Weiner 73]: right-to-left construction
- [McCreight 76]: left-to-right
- [Ukkonen 95]: left-to-right online

Weiner is more suitable for real-time as only a constant number of changes is made at each letter
Suffix Tree

Three classical linear-time algorithms for constructing a suffix tree

- [Weiner 73]: right-to-left construction
- [McCreight 76]: left-to-right
- [Ukkonen 95]: left-to-right online

Weiner is more suitable for real-time as only a constant number of changes is made at each letter.

McCreight and Ukkonen use *suffix links*:

for every node v, $v = au$, define suffix link $S(v) = u$

Weiner uses *prefix links*:

for every node v, and for every letter a, $P_a(v) = av$

provided that node av exists
Prefix links

- The target of a prefix link can be an explicit or an implicit node. The prefix link is called respectively hard or soft.
- If a node has a prefix link by letter a, then all its ancestors do too.
- A soft link $P_a(v)$ is defined iff there is a unique closest descendant u such that $P_a(u)$ is hard, and $P_a(v)$ points to edge $(w, P_a(u))$.

![Diagram showing prefix links in a suffix tree](image_url)
Main idea of Weiner algorithm

transforming suffix tree for t to suffix tree for at

- find the lowest ancestor u of t with a prefix link $P_a(u)$
- $P_a(u)$ is the branching point

$abbabac \Rightarrow babbabac$
Main idea of Weiner algorithm

transforming suffix tree for t to suffix tree for at

- find the lowest ancestor u of t with a prefix link $P_a(u)$
- $P_a(u)$ is the branching point

$abbabac \Rightarrow babbabac$
Towards real-time construction of suffix tree

- [Amir, Kopelowitz, Lewenstein, Lewenstein SPIRE 05]: $O(\log n)$ worst-case per symbol, unbounded alphabet
- [Breslauer, Italiano SPIRE 11]: $O(\log \log n)$ worst-case per symbol, constant alphabet
- [Kopelowitz FOCS 12]: $O(\log \log n + \log \log \sigma)$ expected worst-case per symbol, unbounded alphabet
- [Fischer, Gawrychowski arxiv 13]: $O(\log \log n + \frac{\log^2 \log \sigma}{\log \log \log \sigma})$ worst-case per symbol, unbounded alphabet
Our implementation of Weiner algorithm
Main ideas:

- we store only hard prefix links, soft links are computed “on the fly”
- we maintain a list \mathcal{L}_W corresponding to the Euler tour of the tree
- each node with defined hard link $\mathcal{W}_a(u)$ is “colored” by a in \mathcal{L}_W
Main ideas:

- we store only hard prefix links, soft links are computed “on the fly”
- we maintain a list \(\mathcal{L}_W \) corresponding to the Euler tour of the tree
- each node with defined hard link \(\mathcal{W}_a(u) \) is “colored” by \(a \) in \(\mathcal{L}_W \)

Lemma: To find the deepest ancestor \(u \) of \(t \) with defined (possibly soft) link \(\mathcal{W}_a(u) \), let \(v_1 \) (resp. \(v_2 \)) be the closest node colored with \(a \) preceding (resp. following) \(t \) in \(\mathcal{L}_W \). Then \(u \) is the deepest node between \(lca(t, v_1) \) and \(lca(t, v_2) \).
Our implementation of Weiner

Main ideas:

- we store only hard prefix links, soft links are computed “on the fly”
- we maintain a list L_W corresponding to the Euler tour of the tree
- each node with defined hard link $\mathcal{W}_a(u)$ is “colored” by a in L_W

Lemma: To find the deepest ancestor u of t with defined (possibly soft) link $\mathcal{W}_a(u)$, let v_1 (resp. v_2) be the closest node colored with a preceding (resp. following) t in L_W. Then u is the deepest node between $lca(t, v_1)$ and $lca(t, v_2)$.
Main ideas:

- we store only hard prefix links, soft links are computed “on the fly”
- we maintain a list L_W corresponding to the Euler tour of the tree
- each node with defined hard link $W_a(u)$ is “colored” by a in L_W

Lemma: To find the deepest ancestor u of t with defined (possibly soft) link $W_a(u)$, let v_1 (resp. v_2) be the closest node colored with a preceding (resp. following) t in L_W. Then u is the deepest node between $lca(t, v_1)$ and $lca(t, v_2)$.
Tools that we will use

Colored Predecessor in a List

Problem: Maintain a dynamic list \mathcal{L} whose elements are assigned “colors”. Support queries: given an element $e \in \mathcal{L}$ and a color col, retrieve the closest element $e' \in \mathcal{L}$ preceding e with color col.

Theorem [Mortensen SODA 03, Giyora, Kaplan 09]: If the number of colors is smaller than $\log^{1/4} n$, then there exists a $O(|\mathcal{L}|)$ data structure that answers colored predecessor queries in $O(\log \log |\mathcal{L}|)$ time and supports updates (insertions) in $O(\log \log |\mathcal{L}|)$ time.
Dynamic Lowest Common Ancestor (LCA)

Problem: Maintain a dynamic tree (leave insertion/deletion, edge split, edge merge) supporting lowest common ancestor of two nodes

Theorem [Cole, Hariharan 05]: both updates and queries can be supported in worst-case $O(1)$ time
What we obtained so far

Theorem

We can maintain a suffix tree of right-to-left streaming text by spending $O(\log \log n)$ worst-case time on each symbol, assuming an alphabet size $\leq \log^{1/4} n$.

Simplifies and (slightly) generalizes [Breslauer, Italiano 11]
Our solution to real-time text indexing
Our implementation of ST

Supporting real-time

Fully real-time text indexing on constant-size alphabet

Main idea:

Maintain three distinct data structures for patterns of length

- $\geq \log^2 \log n$ (long patterns),
- between $\log^2 \log \log n$ and $\log^2 \log n$ (medium-size patterns),
- $\leq \log^2 \log \log n$ (small patterns)
Group text symbols into meta-symbols of size $d = \log \log n/(4 \log \sigma)$. There are $\sigma^d = \log^{1/4} n$ meta-symbols.
Data structure for long patterns (sketch)

- Group text symbols into meta-symbols of size
 \[d = \log \log n / (4 \log \sigma) \]. There are \(\sigma^d = \log^{1/4} n \) meta-symbols.

- Apply the suffix tree construction. Spend \(O(\log \log n) \) time on each meta-symbol (i.e. amortized \(O(1) \) time on each symbol).
Data structure for long patterns (sketch)

- Group text symbols into meta-symbols of size $d = \log \log n / (4 \log \sigma)$. There are $\sigma^d = \log^{1/4} n$ meta-symbols.
- Apply the suffix tree construction. Spend $O(\log \log n)$ time on each meta-symbol (i.e. amortized $O(1)$ time on each symbol).
- To match a long pattern P, consider all offsets δ, $0 \leq \delta \leq d - 1$. For each δ, P can be matched in time $|P|/d + \log \log n$ (details left out).
Data structure for long patterns (sketch)

- Group text symbols into meta-symbols of size $d = \log \log n/(4 \log \sigma)$. There are $\sigma^d = \log^{1/4} n$ meta-symbols.
- Apply the suffix tree construction. Spend $O(\log \log n)$ time on each meta-symbol (i.e. amortized $O(1)$ time on each symbol).
- To match a long pattern P, consider all offsets δ, $0 \leq \delta \leq d - 1$. For each δ, P can be matched in time $|P|/d + \log \log n$ (details left out).
- Overall we obtain time
 $O(d(|P|/d + \log \log n) + nb_occ) = O(|P| + nb_occ)$ as $|P| \geq \log^2 \log n$
Group text symbols into meta-symbols of size $d = \log \log \log n$. Maintain compacted trie of truncated suffixes of length $\log^2 \log n$ considered over the alphabet of meta-symbols.

Number of suffixes (trie leaves) is $O(d^{\log^2 \log n})$.

To maintain this trie, use (basically) the same algorithm as above. Spend $O(\log \log (d^{\log^2 \log n})) = O(\log \log \log n)$ time on each truncated suffix (i.e. amortized $O(1)$ time on each letter).

Matching a medium-size pattern P is done similarly. The overall time is

$O(d(|P|/d + \log \log \log n) + nb_{occ}) = O(|P| + nb_{occ})$ as $|P| \geq \log^2 \log \log n$.
Data structure for small patterns (idea)

- Maintain a tree of truncated suffixes of length $\log^2 \log \log n$ and a list of occurrences of each truncated suffix in the current text
- Tabulate all possible trees and all possible updates
- Every update takes $O(1)$ time and a matching query takes time $O(|P| + nb_occ)$
Turning it fully real-time

Two more problems should be overcome to make this solution real-time

Problem 1: Most recent blocks should have a special treatment.
Turning it fully real-time

Two more problems should be overcome to make this solution real-time

Problem 1: Most recent blocks should have a special treatment.
Problem 2: Text length n is unknown.
For a streaming text over a constant-size alphabet, there exists a data structure that can be updated in real time such that at any moment, all positions of any pattern P in the current text can be reported in time $O(|P| + nb_{occ})$.